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Global emergence of unprecedented lifetime 
exposure to climate extremes

Luke Grant1,2 ✉, Inne Vanderkelen1,3,4, Lukas Gudmundsson5, Erich Fischer5, 
Sonia I. Seneviratne5 & Wim Thiery1

Climate extremes are escalating under anthropogenic climate change1. Yet, how  
this translates into unprecedented cumulative extreme event exposure in a person’s 
lifetime remains unclear. Here we use climate models, impact models and demographic 
data to project the number of people experiencing cumulative lifetime exposure to 
climate extremes above the 99.99th percentile of exposure expected in a pre-industrial 
climate. We project that the birth cohort fraction facing this unprecedented lifetime 
exposure to heatwaves, crop failures, river floods, droughts, wildfires and tropical 
cyclones will at least double from 1960 to 2020 under current mitigation policies 
aligned with a global warming pathway reaching 2.7 °C above pre-industrial 
temperatures by 2100. Under a 1.5 °C pathway, 52% of people born in 2020 will 
experience unprecedented lifetime exposure to heatwaves. If global warming reaches 
3.5 °C by 2100, this fraction rises to 92% for heatwaves, 29% for crop failures and 14% 
for river floods. The chance of facing unprecedented lifetime exposure to heatwaves 
is substantially larger among population groups characterized by high socioeconomic 
vulnerabilities. Our results call for deep and sustained greenhouse gas emissions 
reductions to lower the burden of climate change on current young generations.

Climate extremes have detrimental effects on society and are a fore-
most concern around climate change1. Anthropogenic influences have 
been identified in heatwaves, river floods, droughts, crop failures and 
certain aspects of wildfires and tropical cyclones2,3. With continued 
atmospheric warming, the intensity, frequency and duration of some 
of these events are projected to increase further4–9, with varying lev-
els and spread depending on the event considered3. Current policies 
could warm global mean temperature (GMT) to +2.7 °C (+2.2–3.4 °C) 
above pre-industrial levels by the end of the century10. As this warming 
is expected to increase human exposure to climate extremes3, young 
generations will reap the consequences of the present-day mitigation 
of greenhouse gas emissions.

The above climate extremes are projected to occur most frequently 
across the lifetimes of current young generations11. As such, the num-
ber of climate extremes experienced across a person’s lifetime can far 
exceed the expected exposure under a pre-industrial climate. Yet, the 
number of people who will experience this unprecedented lifetime 
exposure (ULE) to climate extremes remains unclear. Here we cross 
an extensive portfolio of multi-model projections of climate extremes 
with demographic data, GMT trajectories and two measures of vulner-
ability. We evaluate the emergence of ULE to extreme events at the grid 
scale to estimate the global membership of birth cohorts that will face 
ULE (Methods). Then, we show how this sub-population is stratified 
in terms of vulnerability. This is one of the first estimates of the num-
ber of people projected to experience ULE across a multidimensional 
framework, including birth year, warming scenario and vulnerability.

 
Unprecedented exposure to heatwaves
We illustrate what ULE means for extreme heatwaves in one grid cell 
(0.5° × 0.5°) located over Brussels, Belgium, for three GMT pathways 
in which warming above pre-industrial temperatures reaches 1.5 °C, 
2.5 °C and 3.5 °C by the year 2100. People born in 1960 and spending 
their life in Brussels are projected to experience three heatwaves in 
their lifetime, showing little sensitivity to the GMT pathway (Fig. 1a). 
In this location, the 1960 birth cohort does not exceed the threshold 
of ULE, which we define as the 99.99th percentile of a large sample of 
lifetime exposures in a pre-industrial control climate and which is six 
heatwaves here (Fig. 1b, grey histogram and dashed line). By contrast, 
the 1990 birth cohort emerges into ULE for the two warmest GMT path-
ways shown (Fig. 1c,d). This implies that, under temperature pathways 
reaching 2.5 °C or higher warming by 2100, this cohort will face more 
heatwaves than they would have been expected to experience with a 
one in ten thousand chance in the absence of climate change. Different 
GMT pathways cause a further divergence in the lifetime exposure of 
those born in 2020 in this location (Fig. 1e,f). In the 1.5 °C pathway, the 
2020 birth cohort is projected to experience nearly 11 heatwaves, yet 
this increases to 18 and 26 heatwaves in pathways reaching 2.5 °C and 
3.5 °C, respectively, by the end of the century. This by far exceeds the 
ULE threshold under each GMT pathway, with an age of emergence 
already around 40 years old for the 2.5 °C and 3.5 °C pathways (Fig. 1e). 
We then count the number of people per birth cohort that eventually 
reach ULE, using absolute population estimates at the grid scale and 
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relative cohort sizes at the country level. In this location, a best estimate 
of 21,000 people from the 1990 birth cohort and 24,000 people from 
the 2020 birth cohort are projected to experience ULE (except for the 
1990 birth cohort under the 1.5 °C pathway). Under a 1.5 °C pathway, all 
cohorts born in Brussels after 1990 reach ULE, totalling 665,000 people. 
For a 3.5 °C pathway, ULE begins for people born in 1978, increasing this 
total to 941,000 people. For cohorts that emerge, it is virtually certain 
(at least  >99.99% chance) that their lifetime heatwave exposure cannot 
be explained by internal climate variability.

We now repeat this analysis for every land grid cell and project the 
population fraction of each birth cohort experiencing ULE to heatwaves 
across the globe (CFheatwaves for cohort fraction reaching ULE to heat-
waves). Of the 81 million people born in 1960, on average, around 16% 
(13 million people) face ULE to heatwaves regardless of the scenario. 
This fraction rises towards younger generations, and from the 1980 
birth cohort onwards, CFheatwaves begins to depend on GMT pathways 
(Fig. 2a). In a 1.5 °C pathway, CFheatwaves stabilizes for recent birth cohorts, 
reaching an average of 52% for the 2020 birth cohort (62 million people). 
Comparatively, CFheatwaves of the 2020 birth cohort is almost doubled 
in a 3.5 °C pathway, reaching 92%. This implies that 111 million chil-
dren born in 2020 will live an unprecedented life in terms of heatwave 

exposure in a world that warms to 3.5 °C compared with 62 million in 
a 1.5 °C pathway.

At the country level, CFheatwaves for the 2020 birth cohort is the highest 
in the tropics under low GMT pathways, yet this pattern disappears as 
heatwaves become widespread under high GMT pathways (Fig. 2c–e 
and Supplementary Tables 1–3). Under a 1.5 °C pathway, equatorial 
regions have relatively high CFheatwaves; of the 177 countries in this analy-
sis, 104 have most of the population of 2020 birth cohort living with 
unprecedented exposure to heatwaves (CFheatwaves ≥ 50%; Fig. 2c). This 
latitudinal pattern is less apparent in a 2.5 °C pathway (Fig. 2d). Here, 
157 countries have CFheatwaves ≥ 50%. In a 3.5 °C pathway, 167 countries 
have CFheatwaves ≥ 50%, 155 countries have CFheatwaves ≥ 90% and in 113 coun-
tries the entire birth cohort faces unprecedented heatwave exposure 
(CFheatwaves = 100%; Fig. 2e).

Unprecedented multi-hazard exposure
We then expand the analysis to a total of six climate extremes12 and 
21 warming pathways (Fig. 3 and Methods). For every combination of 
birth cohort, climate extreme and warming pathway, we quantify the 
number of people experiencing ULE at the grid scale and subsequently 
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Fig. 1 | Cumulative heatwave exposure since birth for Brussels, Belgium. 
a,c,e, Multi-model mean time series of cumulative heatwave exposure for people 
born in 1960 (a), 1990 (c) and 2020 (e) in 1.5 °C (blue line), 2.5 °C (gold line) and 
3.5 °C (red line) pathways. b,d,f, Histograms for 1960 (b), 1990 (d) and 2020 (f) 
birth cohorts show the pre-industrial sample density of 40,000 bootstrapped 
lifetime exposures overlaid with final lifetime exposures from the time series of 

the birth cohort. Dashed lines show the 99.99th percentile of the pre-industrial 
sample distribution, that is, the threshold of unprecedented lifetime exposure 
(ULE) for this location, cohort and climate extreme. Counts of people (right of 
d,f) show the population of the birth cohort that has emerged beyond the 
99.99th percentile of the pre-industrial sample distribution.
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aggregate to the country or global level. Cohort fraction (CF) for climate 
extremes other than heatwaves is lower across all birth years and GMT 
pathways because they are generally less widespread than heatwaves; 
however, they still affect a large population fraction (Fig. 3 and Supple-
mentary Tables 4–18). In a 3.5 °C pathway, 29% of those born in 2020 
will live through unprecedented exposure to crop failures (Fig. 3b). 
This is followed by river floods, in which 14% will face unprecedented 
exposure to this extreme (Fig. 3e). As not all climate projections reach 
high warming levels, the ensemble size shrinks towards higher warming 
levels. Consequently, crop failures, droughts, river floods and tropical 
cyclones, which are more dependent on changes in the water cycle 
than heatwaves, exhibit discontinuities in CF at some GMT intervals 
(Fig. 3b,d–f). These sampling artefacts disappear when visualizing CFs 
for a smaller subset of simulations that are available for all GMT trajecto-
ries (Supplementary Note 1 and Supplementary Fig. 1). Although model 
uncertainties are larger for extremes other than heatwaves, differences 
in CF across birth cohorts are statistically significant for all six climate 
extremes (Supplementary Note 2 and Supplementary Figs.  2 and 3).

Across all projections available for the 2.7 °C pathway aligned with 
current policies10, ULE to heatwaves occurs in the Americas, Africa, 
the Middle East and Australia already for the 1960 birth cohort and 
globally for the 2020 birth cohort (Supplementary Figs. 4m–o and 
5e,k). The ULE to crop failures expands around the United States, 
South America, Sub-Saharan Africa and East Asia between 1960 and 
2020 cohorts (Supplementary Figs. 4 and 5b,h). The ULE to river 
floods occurs in northern latitudes for the 1960 cohort, in line with the 
observations and model projections for precipitation changes13–15 and 
expands southwards into much of the world for the 2020 cohort (Sup-
plementary Fig. 5d,j).

The lower CF of some extremes, such as tropical cyclones, is 
expected given the geographical constraints of these events and their 
distinct meteorological drivers. Tropical cyclones can, therefore, be 
re-evaluated by limiting the analysis to regions that can experience 
them. We consider these regions to be any grid cells exposed at least 
once to the event across our whole ensemble of exposure projections 
(Supplementary Fig. 6). CFtropical cyclones nearly doubles when constraining 
total birth cohort size to exposed regions. For the 2020 birth cohort, 
this estimate changes from 6% to 11% in a 1.5 °C pathway and from 10% 
to 19% in a 3.5 °C pathway.

Heatwaves across vulnerability strata
Finally, we cross our grid-scale projections for ULE to heatwaves against 
two grid-scale indicators of socioeconomic vulnerability (Methods): 
(1) the Global Gridded Relative Deprivation Index v.1 (GRDI; ref. 16), 
which expresses relative deprivation according to six socioeconomic 
indicators; and (2) lifetime mean GDP per capita (denoted as GDP; 
ref. 17). Binning our birth cohort members into the top and bottom 20% 
of GRDI (Fig. 4a) and GDP (Supplementary Fig. 7a) enables a grid-scale 
comparison of ULE for population groups with high and low socio-
economic vulnerability. Using GRDI, we find that the most vulnerable 
subset of each birth cohort projected to experience ULE to heatwaves 
under current policies is substantially larger than the least vulnerable 
subset. This implies that socioeconomically vulnerable people have a 
consistently higher chance of facing unprecedented lifetime heatwave 
exposure compared with the least vulnerable members of their genera-
tion (Fig. 4b). For example, of the 2020 birth cohort, 95% or 23 million 
members of the high deprivation (high socioeconomic vulnerability) 
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Fig. 2 | Rising fraction of birth cohorts facing unprecedented lifetime 
heatwave exposure. a, Box plots show the cohort fraction reaching ULE to 
heatwaves (CFheatwaves) for 1.5 °C (blue), 2.5 °C (gold) and 3.5 °C (red) pathways 
for global birth cohorts between 1960 and 2020 (middle line, median; box 
limits, upper and lower quartiles; whiskers, extend to the full range of the 

model ensemble). b, Bars show global cohort sizes in millions, with totals in grey 
and median numbers of people reaching ULE to heatwaves for 1.5 °C (blue), 
2.5 °C (gold) and 3.5 °C (red) pathways. c–e, Maps display country-level CFheatwaves 
of the 2020 birth cohort for 1.5 °C (c), 2.5 °C (d) and 3.5 °C (e) pathways.
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group face ULE to heatwaves, whereas this is 78% (19 million) for the low 
deprivation group. This disparity is similar when using GDP, but with 
only 1974 and later birth years having significant differences across 
vulnerability strata (Supplementary Fig. 7). Here, for the 2020 birth 
year, 92% (22 million) of the low-income group face ULE under current 
policies, whereas this is 79% (19 million) for the high-income group. 
Under alternative warming pathways of 1.5 °C and 3.5 °C, although the 
same direction of disparities remains across vulnerability strata, the 
lowest vulnerability groups (low deprivation and high GDP) benefit 
the most from a low warming pathway (Fig. 4c,d and Supplementary 
Fig. 7c,d). Socioeconomically vulnerable groups have lower adaptive 
capacity and face more constraints when it comes to implementing 
effective adaptation measures18,19. Our results highlight that precisely 
these groups with the highest socioeconomic vulnerability and low-
est adaptation potential face the highest chance for unprecedented 
heatwave exposure (Fig. 4). This underlines the disproportionate 
risk for deprived communities in light of past and future climate  
extremes.

Discussion
Our analysis only quantifies local exposure by design; yet in reality, 
the effects of climate extremes cascade non-locally. For example, in 
2023, smoke from an active wildfire season in Canada was transported 
south along the east coast of the United States, exposing millions of 
people to hazardous air quality20 and causing an increased cardiopul-
monary disease burden21. Climate extremes also affect society through 
economic impacts, including the rising cost of living due to supply 
chain disruptions22 and taxation to recover public infrastructure23. 
For instance, climate change endangers staple crop production in 

the main breadbasket countries that supply most of our caloric intake 
globally24, forcing market instabilities that only the wealthiest can 
cope with25. These missing non-local impacts make our estimates 
conservative.

By contrast, we do not capture how people adapt to extremes 
and thereby potentially reduce their exposure or vulnerability. For 
example, exposure to heatwaves can be reduced for population 
groups that can afford access to air conditioning18. However, mala-
daptive responses to climate extremes can instead create lock-ins of 
vulnerability and exposure1. Therefore, our lifetime exposure esti-
mates omit beneficial adaptation outcomes as well as detrimental 
non-local and maladaptation effects. Finally, opting for a threshold 
below 99.99% would lower the bar and increase ULE estimates, and 
vice versa. Yet this effect is limited because the reference distribution 
is typically composed of small integers. By contrast, using thresholds 
above 99.99% risks redundancy in our bootstrapped data sample  
(Methods).

Some demographic realities are not accounted for here. Factors 
such as within-country migration, fertility and mortality respond 
in reality to the climate extremes considered here11. In the United 
States, where the population faces exposure to all extremes analysed 
in this study, city centres attract young people26 and disparities in life 
expectancy have been found across race–county combinations27 and 
rural–urban residency28. For instance, life expectancy is longer for 
those living in cities, yet here we apply country-average life expectancy 
and cohort size distribution uniformly within each country. Further-
more, we do not account for within-grid-cell heterogeneity, that is, 
we miss some fine-scale variations in socioeconomic vulnerability 
and exposure in socioeconomically diverse regions such as cities. 
Finally, we focus on the socioeconomic dimension of vulnerability, 
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thereby neglecting that vulnerability to climate extremes may also 
vary with, for instance, age, gender or disability status. As demo-
graphic and multidimensional vulnerability information becomes 
available at ever higher spatial resolution and explicitly accounts for 
climate impact projections, it will become possible to deepen the 
analysis of the interaction between climate change and population  
dynamics.

The uncertainties of the extremes other than heatwaves are 
non-negligible. Hydrological variables have high internal climate 
variability29 and projecting these events requires an additional 
impact-modelling step relative to heatwaves, which are computed 
directly from global climate model output (Methods). Furthermore, 
these events have sensitivities to input data quality and process repre-
sentation across the modelling chain (Supplementary Note 2). Other 
uncertainties, such as demographic representation, are not captured 
in this analysis. Finally, we opt for assessing ULE at the grid scale instead 
of at the country level. In doing so, we downscale demographic data 
instead of upscaling climate data, thereby projecting lifetime expo-
sure based on the local climate of individual birth cohort members. 
This incurs a trade-off for accepting natural variability in locations at 

which ULE occurs, yet minimizing year-to-year variability in country- and 
global-scale CF estimates (Supplementary Note 3 and Supplementary  
Fig. 8).

Conclusions
In summary, we find that large fractions of global birth cohorts are 
projected to live unprecedented exposure to heatwaves, river floods, 
droughts, crop failures, wildfires and tropical cyclones. As the fre-
quency of these six climate extremes increases with warming, so does 
the fraction of people who will face ULE to these events. More ambi-
tious policies are needed to achieve the goal of the Paris Agreement of 
limiting global warming to 1.5 °C by 2100 relative to the 2.7 °C warming 
expected under current policies, especially as the most vulnerable 
groups have more members projected to face unprecedented exposure 
to heatwaves. Children would reap the direct benefits of this increased 
ambition: a total of 613 million children born between 2003 and 2020 
would then avoid ULE to heatwaves. For crop failures, this is 98 million, 
for river floods 64 million, for tropical cyclones 76 million, for droughts 
26 million and for wildfires 17 million. This underlines the urgent need 
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for deep and sustained greenhouse gas emission reductions to safe-
guard the future of current young generations.
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Methods

ISIMIP and exposure projections
The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 
provides a simulation protocol for projecting the impacts of climate 
change across sectors such as biomes, agriculture, lakes, water, fisher-
ies, marine ecosystems and permafrost (www.isimip.org). In ISIMIP2b, 
impact models representing these sectors are run using atmos-
pheric boundary conditions from a consistent set of bias-adjusted 
global climate models (GCMs) from phase 5 of the Coupled Model 
Intercomparison Project (CMIP5) that were selected based on their 
availability of daily data and ability to represent a range of climate 
sensitivities17; the Geophysical Fluid Dynamics Laboratory Earth Sys-
tem Model (GFDL-ESM2M; ref. 30), the earth system configuration 
of the Hadley Centre Global Environmental Model (HadGEM2-ES; 
ref. 31), the general circulation model from the Institut Pierre-Simon 
Laplace Coupled Model (IPSL-CM5A-LR; ref. 32) and the Model for Inter-
disciplinary Research on Climate (MIROC5; ref. 33). Impact simulations 
are run for pre-industrial control (286 ppm CO2; 1666–2099), historical 
(1861–2005) and future (2006–2099) periods. Future simulations are 
based on Representative Concentration Pathways (RCPs) 2.6, 6.0 and 
8.5 of GCM input datasets. Global projections of annual, grid-scale frac-
tions of exposure to each extreme event category are calculated from 
ISIMIP2b impact simulations and GCM input data. For the full details  
of these computations, we refer to ref. 12, but we summarize extreme 
event definitions below.

For heatwaves, droughts, crop failures and river floods, we use local-
ized pre-industrial thresholds to determine event occurrences, whereas 
for tropical cyclones, we use a single absolute threshold, and wildfires 
are modelled explicitly (Supplementary Table 20). Heatwaves affect 
an entire grid cell if the Heat Wave Magnitude Index daily (HWMId;  
refs. 34,35) of that year exceeds a threshold in the pre-industrial con-
trol HWMId distribution in that grid cell11. Although we refer to heat-
waves throughout the paper, our definition technically refers to a 
3-day extreme heat event that is expected on average once per century 
under pre-industrial climate conditions. These extreme heat events  
occur, by definition, everywhere across the world, but with different 
associated absolute temperature values. Previous analysis highlighted 
that intergenerational inequalities in lifetime heatwave exposure are 
robust across a range of heatwave definitions11. Crop failures are based 
on the sum of the area occupied by maize, wheat, soy or rice within a 
grid cell when their simulated yield falls below a threshold of their 
pre-industrial reference yield. Droughts, such as heatwaves, affect an 
entire grid cell if, for 7 months, monthly soil moisture remains below 
a threshold of pre-industrial soil moisture levels. Floods only corre-
spond to river flooding, and the flooded area is derived from comparing 
daily discharge simulations from models of the global water sector to 
pre-industrial discharge. CaMa-Flood, a global river-routing model36, 
is used to convert these discharge values to flooded areas. Tropical 
cyclones occur if a grid cell sustains hurricane-force winds (≥64 knots) 
at least once a year37,38. Exposure to tropical cyclones does not encom-
pass the flood hazards typically associated with tropical cyclones. 
Wildfires occur when the burnt area is simulated in a grid cell. Burnt 
area is either taken directly from annual burnt area calculations or as 
the annual sum of monthly burnt area in cases in which impact models 
simulate burnt area sub-annually, capped at 100% of a grid cell. We 
reiterate that all exposure definitions here neglect potential exposure 
reduction measures and non-local effects.

We subsequently quantify human exposure to climate extremes 
in a way that facilitates comparison and aggregation across extreme 
event categories. We consider all people in a grid cell exposed to a 
climate extreme in a particular year if the climate extreme occurs in 
that year. We thereby assume that if such a river flood or wildfire occurs 
somewhere in a 0.5° × 0.5° grid cell, this is sufficiently close to any per-
son located in that grid cell to be considered affected by this extreme 

event. Using demographic data (see below), we subsequently convert 
this annual human exposure to lifetime exposure of birth cohorts by 
summing annual grid fractions of individual event categories across 
their lifetimes.

Demographics
Demographic data for population totals, cohort sizes and life expec-
tancy enable our projection of the CF experiencing ULE to these six 
extremes. Population totals at the grid scale come from the ISIMIP 
database (Fig. 2b; ref. 17) and originate from population estimates 
from v.3.2 of the History Database of the Global Environment (HYDE3.2; 
refs. 39,40) for the historical period (1860–2000) and population pro-
jections from middle-of-the-road Shared Socioeconomic Pathway 
(SSP2; refs. 41,42) for the future period (2010–2100). We note that these  
datasets at present do not account for the impact of climate on popula-
tion dynamics, for example, through changes in migration, fertility and 
mortality, although these feedbacks may substantially alter the demo-
graphic data. Cohort sizes from the Wittgenstein Centre for Demog-
raphy and Global Human Capital43 provide estimates of country-level 
population totals every 5 years (between 1950 and 2100) for each 5-year 
age group (0- to 4-year-olds, 5- to 9-year-olds, and so on, until 95- to 
99-year-olds and a final age group for those 100 years and older). Life 
expectancy data come from the United Nations World Population Pros-
pects (UNWPP; ref. 44) and describe the life expectancy of 5-year-olds 
at the country level for 5-year blocks (1950–1955 to 2015–2020). In this 
dataset, life expectancy is reported for 5-year-olds to exclude biases 
from infant mortality. Countries that can be spatially resolved at the 
ISIMIP grid scale and have cohort and life expectancy estimates in these 
datasets meet the requirements of this study and total 177. We refer to 
the supplementary material of ref. 11 for a broader discussion of these 
datasets but explain our application of them in this analysis below.

All demographic datasets are modified to represent lifetimes annu-
ally, beginning from 1960 to 2020. Life expectancies for each country 
are first linearly interpolated to annual values by assuming that the 
values of the original 5-year groups are representative of the middle 
of that group. Furthermore, we add 5 years to annual life expectan-
cies to capture the life expectancy of each cohort since birth, as the 
original data begin at age 5. As the maximum UNWPP life expectancy 
for people born in 2020 prescribes the final year in this analysis (2113), 
annual population totals must be extrapolated to reach this year. For 
population totals, we take each year beyond 2100 as the mean of the 
preceding 10 years of the dataset, such that population numbers for 
2101 are the mean of 2091–2100. For cohort sizes in each country, we 
interpolate annual cohort sizes and age groups from the original 5-year 
age groups and divide age totals by 5 to maintain original population 
sizes in this dataset and linearly extrapolate these estimates to 2113. 
This provides the absolute numbers of 0- to 100-year-olds for each 
year across 1960–2113.

To downscale this demographic information to the grid scale, we 
assume spatially homogeneous cohort representation and life expec-
tancy. Birth cohort size is represented as the number of people of age 0 
of a given birth year in a given grid cell. This is estimated by multiplying 
the absolute population of the birth year (using the annual grid-scale 
population totals from ISIMIP) by the relative size of the age 0 cohort 
(using the interpolated 0- to 100-year-old population totals from the 
Wittgenstein Centre cohort data). Spatial variability in age structure 
and life expectancy within a country is therefore ignored in this study.

Mapping impacts to GMT trajectories
To project CF across different warming pathways by 2100, we construct 
a series of incrementally warming GMT pathways between 1960 and 
2113 based on GMT trajectories taken from the AR6 Scenario Explorer45. 
The time series from the AR6 scenario explorer were chosen as anchor 
points for interpolation to produce a range of plausible GMT time series. 
Furthermore, they were selected to minimize overshooting in the early 
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years of low GMT pathways over higher GMT pathways, which can skew 
lifetime exposure estimates for early birth cohorts (Supplementary 
Fig. 9). The upper bound of this subset was limited to 3.5 °C in favour 
of sampling more simulations for higher GMT projections, which we 
discuss further below. For the lower bound, 1.5 °C was chosen because 
it is a more realistic minimal warming scenario than 1.0 °C. Note that 
the 1.5 °C anchor scenario maximally reaches 1.57 °C before reducing 
to 1.5 °C by 2100. It is, therefore, referred to as 1.5 °C throughout this 
analysis. These warming levels are reported relative to pre-industrial 
temperatures from 1850 to 1900. This yields a total of 21 GMT pathways 
for which we project CF.

Our dataset of extreme event exposures represents occurrences 
of these extremes forced by GCM-modelled climates. These climates 
have unique GMT warming pathways that depend on their radiative 
forcing scenario (historical or RCP), as prescribed by the ISIMIP2b mod-
elling protocol. To project these exposure maps along even intervals 
of warming scenarios, which the original simulations do not provide, 
we use the 21 GMT pathways described above. For each pairing of the 
21 target GMT pathways and the concatenated historical and future 
exposure projections, we sample exposures by matching the GMT 
warming levels of the exposure series to the years of the target GMT 
pathways (Supplementary Figs. 9 and 10). The GMT warming levels 
behind the exposure projections are first smoothed with a 21-year roll-
ing mean before GMT mapping is undertaken. In cases in which our 
constructed GMT pathways exceed the GMT warming levels of GCM 
simulations by too much, this mapping erroneously resamples the year 
of exposures corresponding to the maximum warming level of their 
forcing GCM. To this end, we implement a constraint in this sampling 
procedure such that GMT-mapped series are only used if the maximum 
difference across all GMT pairs is no larger than 0.2 °C. This constraint 
incrementally reduces ensemble sizes of exposure projections for 
higher GMT pathways (Supplementary Table 19).

Lifetime exposure
Estimating lifetime exposure to extreme events requires crossing life 
expectancy data at the country level with grid-scale exposure pro-
jections. For each GMT trajectory (1.5–3.5 °C, 0.1 °C intervals), birth 
year (1960–2020) and country (177), exposures are summed across 
lifetimes at the grid scale. This assumes life expectancy to be spatially 
homogeneous across each country. Exposure during the death years 
is also included in this sum by multiplying these exposure projections 
by the fraction of the final year lived. This produces country-wide maps 
of lifetime exposure at the grid scale for each GMT trajectory and birth 
year in this analysis.

To generate a baseline distribution of lifetime exposure in a world 
without climate change, large samples of pre-industrial lifetime expo-
sures are bootstrapped assuming 1960 life expectancy in each country. 
Here, for each exposure projection originating from a simulation under 
a pre-industrial climate, 10,000 lifetime exposures are estimated by 
resampling exposure years with replacement. Depending on ISIMIP2b 
data availability, pre-industrial exposure projections have a length 
of 239–639 years per simulation from which to resample from11. This 
process generates 40,000–310,000 country-wide maps of lifetime 
exposure, depending on the extreme event considered and its underly-
ing data availability, enabling exposure projections in a pre-industrial 
climate. Using the pre-industrial period as a baseline enables (1) our 
GMT mapping procedure; (2) bootstrapping a stationary time series 
to achieve a large reference dataset; and (3) the production of a refer-
ence dataset with information that is independent of the projections 
forming our ULE estimates.

Emergence of ULE
We define an emergence threshold for ULE to extreme events as the 
99.99th percentile of our grid-scale samples of pre-industrial lifetime 
exposure. When it comes to the selection of this percentile, we went 

as extreme as possible given the bootstrapping of the pre-industrial 
control runs. This choice was based on a sensitivity analysis for differ-
ent percentile values that showed a levelling off of lifetime exposure 
for percentiles more extreme than 99.99%. This indicated that the 
99.99th percentile achieves the limit of reliable information that can 
be extracted from the empirical distribution. For each extreme event, 
birth year, GMT pathway and grid cell, we assess if lifetime exposure 
emerges or passes this threshold of extreme exposure in a pre-industrial 
climate. If this threshold is passed, we consider the whole birth cohort 
in this grid cell to have emerged, tallying its size among a global pool of 
the same birth cohort and GMT trajectory of people projected to live 
ULE. This means that, in some locations, even if the sum of exposed 
grid cell fractions across a pre-industrial lifetime does not cover the 
entire grid cell, we still extract the entire birth cohort size associated 
with that grid cell. We sum the number of emerged people in each birth 
cohort globally, although this birth cohort has a different life expec-
tancy in each country. Once the number of people who have emerged 
globally is tallied, we divide this by the respective total cohort sizes to 
estimate CF per birth cohort. Note that ULE, therefore, does not refer to 
unprecedented in terms of the magnitude of assets or people exposed, 
but rather in terms of the number of events accumulated across an 
average person’s lifespan in comparison with what they would face in 
a pre-industrial climate.

ULE across socioeconomic vulnerability strata
We use two grid-scale indicators of vulnerability to compare with our 
estimates of ULE to heat waves. The first is an ISIMIP2b GDP input 
dataset using concatenated historical and SSP2 time series covering 
1860–2099 annually17. This dataset was disaggregated from the country 
to grid level using spatial and socioeconomic interactions among cities, 
land cover and road network information and SSP-prescribed estimates 
of rural and urban expansion46. The second indicator is the Global Grid-
ded Relative Deprivation Index v.1 (GRDI; ref. 16), which communicates 
relative levels of multidimensional deprivation and poverty (0–100, 
least to most deprived). This deprivation score uses six input compo-
nents. First is the child dependency ratio, which is the ratio between the 
population of children and the working-age population (15–64 years). 
This can indicate vulnerability, for which high ratios indicate a depend-
ency of supposed consumers and non-producers on the working-age 
(producing) population47. Second, infant mortality rates (IMR), taken 
as the deaths in children younger than 1 year of age per 1,000 live births 
annually, are a signal of population health and form a long-term Sustain-
able Development Goal of the United Nations48. Third, the Subnational 
Human Development Index (SHDI), an assessment of human well-being 
across education, health and standard of living, originates from the 
Human Development Index, the latter of which is considered one of 
the most popular indices to assess country-level well-being. The SHDI 
improves on the HDI in terms of spatial scale and in representing 161 
countries across all world regions and development levels49. Fourth, as 
rural populations are generally prone to multidimensional poverty50, 
low values in the ratio of built-up to non-built-up area (BUILT) signal 
high deprivation. The fifth and sixth components use the mean (of 
2020; VNL 2020) and slope (2012–2020; VNL Slope) of nighttime light 
intensity, a proxy for human activity, economic output and infrastruc-
ture development51, to indicate deprivation for areas of low nighttime 
light intensity. These input components range from 30 arc seconds 
(roughly 1 km) resolution to subnational regions and are harmonized 
in an ArcGIS Fishnet feature class for aggregation onto a 0–100 range 
representing low to high deprivation. For the final aggregation, the 
IMR and SHDI components are given half the weight of the rest of the 
inputs, given their coarser resolution. The GRDI, therefore, encapsu-
lates multiple dimensions through which generations face depriva-
tion and therewith socioeconomic vulnerability to climate extremes. 
Although our approach does not explicitly account for actual or poten-
tial adaptation to climate change, this multidimensional approach to 
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vulnerability provides relevant information on the current adaptation 
potential of local populations.

We preprocess GDP and GRDI products to enable their comparison 
with our ULE estimates across birth years. For GDP, similar to other 
datasets in our analysis, we extend the series to 2113 to accommodate 
the longest life expectancy of the 2020 birth cohort by copying the final 
year of the original dataset. We then use our ISIMIP population totals to 
compute GDP per capita at the grid scale. Using the GDP per capita met-
ric, we calculate lifetime mean GDP per capita using our life expectancy 
information for the 1960–2020 birth cohorts. We refer to lifetime mean 
GDP per capita as simply GDP. For GRDI, we conservatively regrid the 
original grid cells of  about 1 km to the 0.5° ISIMIP grid. Although GRDI 
is a map composed of data spanning 2010–2020, we assume this to be 
representative of 2020, but nonetheless compare it with the 1960–2020 
birth cohort range, similar to the rest of the analysis.

We then identify 20% quantile ranges (that is, (0–20], (20–40], … 
(80–100]) for the lifetime GDP of each birth year and for the singular 
GRDI map (assumed to align with 2020 population totals). To this end, 
we rank the vulnerability indicators and apply these ranks to our birth 
cohort totals on the same grid and for the matching year. For example, 
the ranks taken from the lifetime mean GDP of the 2020 birth cohort 
are aligned with the population totals of newborns in 2020. Finally, we 
bin the ranked vulnerability indicators by their associated population 
totals into five groups of nearly equal population (as it is not possible to 
achieve perfect bin sizes given the sums of grid-scale population totals). 
This groups the richest and poorest and least and most deprived into 
the aforementioned quantile ranges. The quantile range of each vul-
nerability indicator is then a map that can be used to mask the existing 
locations of ULE, such as birth years and all GMT pathways. With GRDI 
(Supplementary Fig. 11) and GDP (Supplementary Fig. 12), we compare 
the lowest and the highest 20% of each indicator by population.

Data availability
The data for this analysis originate from multiple sources and are hereby 
listed. Model inputs, raw impact model simulations and post-processed 
extremes (the latter as Derived Output Data) from ISIMIP2b, as well as 
GDP data, are accessible at the ISIMIP repository here (https://data.
isimip.org). Cohort sizes are taken from the Wittgenstein Centre for 
Demography and Global Human Capital (https://dataexplorer.witt-
gensteincentre.org/wcde-v2). Life expectancy data come from the 
UN demographics data portal (https://population.un.org/dataportal/
home?df=10750103-f8fa-4a7e-bb6a-b0f151970005). Global mean tem-
peratures are extracted from the AR6 scenario explorer45 (https://doi.
org/10.5281/zenodo.7197970). GRDI is hosted on the NASA EARTHDATA 
platform (https://doi.org/10.7927/3xxe-ap97). Maps in this analysis 
contain base map information made with Natural Earth (naturalearth-
data.com).

Code availability
The code for this analysis can be found at GitHub (https://github.com/
VUB-HYDR/2025_Grant_etal_Nature/tree/main).
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